Yet Another Doctor Blog On The Internet

Gastrointestinal motility problems in patients with Parkinson's disease. Effects of antiparkinsonian treatment and guidelines for management.


Recent studies have suggested that exposure to fluoroquinolones represents a risk factor for the development of Clostridium difficile infections and that the acquisition of resistance to the newer fluoroquinolones is the major reason facilitating wide dissemination. In particular, moxifloxacin (MX) and levofloxacin (LE) have been recently associated with outbreaks caused by the C. difficile toxinotype III/PCR ribotype 027/pulsed-field gel electrophoresis type NAP1 strain. In this study, we evaluated the potential of MX and LE in the in vitro development of fluoroquinolone resistance mediated by GyrA and GyrB alterations. Resistant mutants were obtained from five C. difficile parent strains, susceptible to MX, LE, and gatifloxacin (GA) and belonging to different toxinotypes, by selection in the presence of increasing concentrations of MX and LE. Stable mutants showing substitutions in GyrA and/or GyrB were obtained from the parent strains after selection by both antibiotics. Mutants had MICs ranging from 8 to 128 microg/ml for MX, from 8 to 256 microg/ml for LE, and from 1.5 to > or = 32 microg/ml for GA. The frequency of mutation ranged from 3.8 x 10(-6) to 6.6 x 10(-5) for MX and from 1.0 x 10(-6) to 2.4 x 10(-5) for LE. In total, six different substitutions in GyrA and five in GyrB were observed in this study. The majority of these substitutions has already been described for clinical isolates or has occurred at positions known to be involved in fluoroquinolone resistance. In particular, the substitution Thr82 to Ile in GyrA, the most common found in resistant C. difficile clinical isolates, was observed after selection with LE, whereas the substitution Asp426 to Val in GyrB, recently described in toxin A-negative/toxin B-positive epidemic strains, was observed after selection with MX. Interestingly, a reduced susceptibility to fluoroquinolones was observed in colonies isolated after the first and second steps of selection by both MX and LE, with no substitution in GyrA or GyrB. The results suggest a relevant role of fluoroquinolones in the emergence and selection of fluoroquinolone-resistant C. difficile strains also in vivo.

The anti-infective prophylaxis with posaconazole and levofloxacin resulted in a significant reduction of 'possible' IFI with a number-needed to treat to prevent one IFI of only 3 but did not result in a reduction of the incidence of bacteraemia.

S. pneumoniae and H. influenzae are still the most prevalent organisms isolated in acute exacerbation of chronic obstructive pulmonary disease in our population. Levofloxacin is still considered a highly sensitive antibiotic against these common micro-organisms in our population, but S. pneumoniae has started developing resistance against levofloxacin. Therefore, intermittent surveillance regarding development of resistance pattern of common micro-organisms against commonly prescribed antibiotics is required.

Resistance profiles of coccus bacteria to fluoroquinolones were evaluated in isolates of Streptococcus pneumoniae, Staphylococcus aureus, coagulase negative staphylococci and Enterococcus spp. The samples were recovered from Colombian hospitals between 1994 and 2004.

The P clone strain isolated during an outbreak of pan-drug-resistant Acinetobacter species in Peking Union Medical College Hospital 2004 was not susceptible to most common antimicrobial agents tested. The 7 representative clones produced multiple beta-lactamases: TEM-1, high-level AmpC, SHV-type, OXA-23 carbapenemase and IMP-8 and metalloenzyme respectively. One clone produced PER-1 enzyme. These 7 clone strains were resistant to most beta-lactams (including carbapenems), erythromycin, chloramphenicol, and rifampin. Two clone strains were susceptible to cefoperazone/sulbactam and amikacin while 4 clone strains susceptible to levofloxacin. All of the 7 clones were susceptible to minocycline and colistin. Five different integrons were found, harboring the genes mediating the resistance to aminoglycosides, rifampin, chloramphenicol, and carbapenems (bla(IMP-8)).

Identification of the types of the species designated Brucella species was made using the polymerase chain reaction (PCR), with type-specific primers. Serotyping was performed using mono-specific A and M antisera. The minimum inhibitory concentrations (MICs) of antibiotics known to have good intracellular penetration (doxycycline, rifampicin, ofloxacin, levofloxacin, moxifloxacin, clarithromycin, and azithromycin) were determined by the agar dilution method.

At present, the resistance to antibiotics is considered the most important reason for Helicobacter pylori (HP) eradication failure. The aim of this study was to estimate the prevalence of antimicrobial resistance of HP strains and to evaluate tailored and empiric therapeutic regimens in patients with peptic ulcer disease associated with infection of this microorganism.

The use of cardiopulmonary bypass (CPB) during cardiac surgery causes regional ventilation-perfusion mismatch, contributing to regional disturbances in antibiotic penetration into lung tissue. Ventilation-perfusion mismatch is associated with postoperative pneumonia, a frequent and devastating complication after cardiac surgery. In this prospective clinical animal study, we performed in vivo microdialysis to determine the effect of CPB on regional penetration of levofloxacin (LVX) into lung tissue. Six pigs underwent surgery with CPB (CPB group), and another six pigs underwent surgery without CPB (off-pump coronary artery bypass grafting; OPCAB group). LVX (750 mg) was administered intravenously to all pigs immediately after surgery. For regional measurements of LVX in pulmonary concentrations, microdialysis probes were inserted in both lungs of each pig. Pigs were placed in the right lateral position. Time versus concentration profiles of unbound LVX were measured in the upper and lower lung tissue and plasma in all pigs. In all pigs, maximum concentrations (Cmax) of LVX were significantly lower in the upper lung than in the lower lung (OPCAB, P = 0.035; CPB, P < 0.001). Median Cmax of LVX showed a significant difference in the upper versus lower lung in the CPB group (P < 0.05). No significant difference was found in the median Cmax of LVX in the upper and the lower lung in the OPCAB group (P = 0.32). Our data indicate that CPB affects perioperative regional antibiotic penetration into lung tissue. Common clinical antibiotic dosing schemes should be reevaluated in patients undergoing coronary artery bypass grafting with CPB.